Specific Heat Worksheet #1

	Specific Heat (J/g°C)			
١	Aluminum	0.90	Iron	0.450
,	Copper	0.38	Lead	0.130
	Gold	0.13	Steam	1.87
	Ice	2.09	Water	4.18

Calculate the following showing ALL work to receive credit.

For #1-4 circle the variables it gives you and underline what you are trying to find. You can use two colors of highlighters if you like.

Q	Problem
1	Find the amount of heat (Q) needed to raise the temperature of 5.00 g of a substance from 20.0° C to 30.0° C if the specific heat of the substance is 2.01 J/g°C. 100.5 J
2	A metal with a specific heat of 0.780 J/g°C requires 45.0 J of heat to raise the temperature by 2.00°C. What is the mass of the metal? 28.8 g
3	A substance requires 50.0 J of heat to raise its temperature by 6.00°C. If the mass of the substance is 5.00 g, what is the specific heat of the substance? 1.67 J/g°C
4	A metal with a specific heat of 0.70 J/g°C and a mass of 8.00 g absorbs 48.0 J of heat. What will be the temperature change of the metal? 8.57 °C
5	How much heat (Q) is needed to raise the temperature of 8.00 g of lead by 10.0°C? 10.4 J
6	The temperature of a 250.0 g ball of iron increases from 19°C to 32°C. How much heat did the iron ball gain? 1462.5 J
7	The temperature of a 100.0-g block of ice increases by 3.00°C. How much heat does the ice receive? 627 J
8	Ten grams of steam absorbs 60.0 J of heat. What is the temperature increase of the steam? 3°C
9	A piece of lead loses 78.0 J of heat and experiences a decrease in temperature of 9.0°C. What is the mass of the piece of lead? 66.7 g
10	What is the specific heat of a substance in J/g°C, if a 15 gram piece of the substance gains 65 J of heat when it is heated from 10°C to 45°C?

Specific Heat Worksheet #1

[Specific Heat (J/g°C)			
ſ	Aluminum	0.90	Iron	0.450
ſ	Copper	0.38	Lead	0.130
ſ	Gold	0.13	Steam	1.87
ſ	Ice	2.09	Water	4.18

Calculate the following showing $\underline{\boldsymbol{ALL}}$ work to receive credit.

For #1-4 circle the variables it gives you and underline what you are trying to find. You can use two colors of highlighters if you like.

Q	Problem
1	Find the amount of heat (Q) needed to raise the temperature of 5.00 g of a substance from 20.0° C to 30.0° C if the specific heat of the substance is 2.01 J/g° C. 100.5 J
2	A metal with a specific heat of 0.780 J/g°C requires 45.0 J of heat to raise the temperature by 2.00°C. What is the mass of the metal? 28.8 g
3	A substance requires 50.0 J of heat to raise its temperature by 6.00°C. If the mass of the substance is 5.00 g, what is the specific heat of the substance? 1.67 J/g°C
4	A metal with a specific heat of 0.70 J/g°C and a mass of 8.00 g absorbs 48.0 J of heat. What will be the temperature change of the metal? 8.57 °C
5	How much heat (Q) is needed to raise the temperature of 8.00 g of lead by 10.0°C? 10.4 J
6	The temperature of a 250.0 g ball of iron increases from 19°C to 32°C. How much heat did the iron ball gain? 1462.5 J
7	The temperature of a 100.0-g block of ice increases by 3.00°C. How much heat does the ice receive? 627 J
8	Ten grams of steam absorbs 60.0 J of heat. What is the temperature increase of the steam? 3°C
9	A piece of lead loses 78.0 J of heat and experiences a decrease in temperature of 9.0°C. What is the mass of the piece of lead? 66.7 g
10	What is the specific heat of a substance in J/g°C, if a 15 gram piece of the substance gains 65 J of heat when it is heated from 10°C to 45°C?

Specific Heat Worksheet #1

Calculate the following showing <u>ALL</u> work to receive credit.

Specific Heat (J/g°C)			
Aluminum	0.90	Iron	0.450
Copper	0.38	Lead	0.130
Gold	0.13	Steam	1.87
Ice	2.09	Water	4.18

For #1-4 circle the variables it gives you and underline what you are trying to find. You can use two colors of highlighters if you like.

Q	Problem
1	Find the amount of heat (Q) needed to raise the temperature of 5.00 g of a substance from 20.0° C to 30.0°C if the specific heat of the substance is 2.01 J/g°C. 100.5 J
2	A metal with a specific heat of 0.780 J/g°C requires 45.0 J of heat to raise the temperature by 2.00°C. What is the mass of the metal? 28.8 g
3	A substance requires 50.0 J of heat to raise its temperature by 6.00°C. If the mass of the substance is 5.00 g, what is the specific heat of the substance? 1.67 J/g°C
4	A metal with a specific heat of 0.70 J/g°C and a mass of 8.00 g absorbs 48.0 J of heat. What will be the temperature change of the metal? 8.57 °C
5	How much heat (Q) is needed to raise the temperature of 8.00 g of lead by 10.0°C? 10.4 J
6	The temperature of a 250.0 g ball of iron increases from 19°C to 32°C. How much heat did the iron ball gain? 1462.5 J
7	The temperature of a 100.0-g block of ice increases by 3.00°C. How much heat does the ice receive? 627 J
8	Ten grams of steam absorbs 60.0 J of heat. What is the temperature increase of the steam? 3°C
9	A piece of lead loses 78.0 J of heat and experiences a decrease in temperature of 9.0°C. What is the mass of the piece of lead? 66.7 g
10	What is the specific heat of a substance in J/g°C, if a 15 gram piece of the substance gains 65 J of heat when it is heated from 10°C to 45°C?

Specific Heat Worksheet #1

Specific Heat (J/g°C)			
Aluminum	0.90	Iron	0.450
Copper	0.38	Lead	0.130
Gold	0.13	Steam	1.87
Ice	2.09	Water	4.18

Calculate the following showing **ALL** work to receive credit.

For #1-4 circle the variables it gives you and underline what you are trying to find. You can use two colors of highlighters if you like.

Q	Problem
1	Find the amount of heat (Q) needed to raise the temperature of $5.00~g$ of a substance from 20.0° C to 30.0° C if the specific heat of the substance is $2.01~J/g^{\circ}$ C. $100.5~J$
2	A metal with a specific heat of $0.780 \text{ J/g}^{\circ}\text{C}$ requires 45.0 J of heat to raise the temperature by 2.00°C. What is the mass of the metal? 28.8 g
3	A substance requires 50.0 J of heat to raise its temperature by 6.00°C. If the mass of the substance is 5.00 g, what is the specific heat of the substance? 1.67 J/g°C
4	A metal with a specific heat of 0.70 J/g°C and a mass of 8.00 g absorbs 48.0 J of heat. What will be the temperature change of the metal? 8.57 °C
5	How much heat (Q) is needed to raise the temperature of 8.00 g of lead by 10.0°C ? 10.4 J
6	The temperature of a 250.0 g ball of iron increases from 19°C to 32°C. How much heat did the iron ball gain? 1462.5 J
7	The temperature of a 100.0 -g block of ice increases by 3.00 °C. How much heat does the ice receive? 627 J
8	Ten grams of steam absorbs 60.0 J of heat. What is the temperature increase of the steam? 3°C
9	A piece of lead loses 78.0 J of heat and experiences a decrease in temperature of 9.0°C. What is the mass of the piece of lead? 66.7 g
10	What is the specific heat of a substance in J/g°C, if a 15 gram piece of the substance gains 65 J of heat when it is heated from 10°C to 45°C?